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ABSTRACT

The possible use of residue arithmetic in an optical or opto-

electronic computer is investigated. The fundamental properties of the

residue number system are first considered. Various optical methods for

implementing residue operations are discussed. A configuration for an opto-

electronic residue matrix-vector multiplier is proposed. All-electronic

implementation of residue operations is also considered, and the

potential advantages of optics are identified.

1 ,F o r

IS G ,

I!'

U

L'

A 7 Tr77 7i", (ArSC)

~""d is

-hi, D
Chie', >-{',: '[ ' -,l Iformation Division .



I. INTRODUCTION

A wide variety of coherent and incoherent optical systems have been

developed for performing data processing operations, in either discrete or

continuous form. 1 ,2,3 However, these systems have always suffered from

the fact that they have limited output accuracy and dynamic range.

Methods which retain the high degree of parallelism obtainable from optics,

but which offer improved accuracy and dynamic range, are therefore of great

interest.

The limiting accuracy of analog optical systems is often stated as being

about 1 part in 1000 (0.1%, or 10 bits) under the best of conditions. This

limitation arises from many sources and depends on the particular system

considered; often the final detecting devices are limited to this kind of

accuracy.

Closely connected with the issue of accuracy-is the limited dynamic

range of any physical system. Noise requires that the outputs be greater

than some lower limit, while system nonlinearities require that the output

not exceed a certain upper limit. We define the dynamic range of a given

system, measured in bits, to be the base 2 logarithm of the ratio of the

largest to the smallest allowable outputs.

To solve the problems of limited output accuracy and dynamic range,

many possibilities for the construction of digital optical computing

systems have been explored. 4 ,s ,'5 7 However, the difficulties in realizing

optical logical switching devices, which play an essential role in a

conventional optical-digital arithmetic unit, have so far prevented a

practical solution to this problem.
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In this report we consider some new types of high-speed opto-electronic

systems capable of performing data processing operations with higher accuracy

and dynamic range than are afforded by more conventional analog optical

systems. In the systems of interest here, residue arithmetic is used,

rather than the more conventional binary or decimal arithmetics. Electronic

correlators based on the residue number system have been considered 8 and

even constructed9 in the past, and the use of residue arithmetic in an

optical arithmetic unit has been proposed recently. 10  Such a system offers

the interesting possibility of a direct trade-off between space-bandwidth

product and accuracy, a property not shared by conventional optical processors.

There are two features of the residue number system that are extremely

well matched to optical systems. [lost obvious is the fact that there is no

carry mechanism needed in residue arithmetic. This property allows all

computations to run in parallel, with no necessity for interconnections

between the results of sub-calculations until the final decoding step, which

returns the calculation results to a more conventional number system.

A second important property arises from the fact that the residue

number system decomposes a calculation into sub-calculations of smaller

computational complexity. More precisely, each sub-calculation for a

different modulus requires an accuracy commensurate with that modulus,

yet a much higher accuracy is achieved after the results of these low-

accuracy sub-calculations are recombined. The total range of the output

is determined by the product M of all the moduli. As we increase M

by increasing the number and/or the size of the moduli, the accuracy of

the system improves. Once a calculation requiring a large dynamic range is

decomposed into segments that can be handled directly by conventional analog
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methods, the full advantage of the parallel processing of optical systems

can be utilized tc handle these segments.

In this report we first introduce the reader to the residue number

system. Some optical methoJs for implementing residue arithmetic operations

are then discussed. Next, the basic concept of an opto-electronic residue

matrix-vector multiplier is described. Electronic implementations of a

residue computer are considered. Finally, the potential advantages of optics

are discussed.

II. RESIDUE ARITHMETIC

A. A Brief Introduction to Residue Arithmetic

There is evidence that residue arithmetic is theoretically the fastest

way of performing addition, subtraction, multiplication, and polynomial

transforms 11 ,12 ,13 ,1 4 , 5 The main characteristic of the number system

is that there are no carries and thus all columns of a calculation can

be processed in parallel.

The residue number system is based upon N fixed and relatively

prime (i.e., containing no common factors) integers mlm 2 ... ,mN which

are called moduli. The residue of any integer X with respect to a

particular modulus m. is denoted Rm , and is defined to be the least
i

positive integer remainder of the division of X by mi. The H-tuple

of residues (R:i,R ...,Rm) with respect to the N different moduli
mi m2

provides a unique representation of any integer X in the range

0 to M-1 , where M is the product of the relatively prime moduli

M f in. (1)

For integers outside this range the residue representation is ambiguous.

In order to help the reader understand what is )rchably an unfamiliar
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number system, we now prescnt some very specific examples of how arithmetic

operations are carried out using residues. The moduli chosen for the various

examples presented throughout this section are 5, 7, 9 and 4. Note that

these numbers are relatively prime. The product of the moduli is in this

case 1 = 1260 , and hence the useful range before ambiguity is 0 to 1259.

The order of the moduli is of no consequence, except that the last modulus

is chosen to be an even number. As will be discussed later, this convention

allows us to easily detect negative numbers, the unambiguous range being

changed to -630 < X < + 629.

B. Addition

An example of addition of two numbers in the residue system is

presented in table 1. In this example, 19 is converted to (4,5,1,3) in

the residue system. 4 is the residue of 19 for modulus 5; that is, 4

is the least positive integer remainder of the divfsion of 19 by 5.

Similarly, 5 is the residue for modulus 7, 1 for modulus 9, and 3 for modulus

4. 87 is translated into residues in a similar manner, yielding (2,3,6,3).

Now each column in table 1 is added independently in the conventional fashion,

but the sum is expressed as a residue with respect to the associated modulus.

For example, in the first column, 4+2 = 6, but the residue of 6 for modulus

5 is 1. The other columns are treated similarly. The residue result

(1,1,7,2) means that the conventional sum, when divided by 5 has remainder

1, when divided by 7 has remainder 1, etc. The four residues uniquely deter-

mine the answer within the range 0 to 1259. A quick check of the results

can be obtained by converting the conventional result 106 into its residue

representation. The answer is indeed (1,1,7,2). We defer to a later

section a discussion of exactly how a residue representation can be decoded

-5-



5 7 9 4

19 -~ 4 5 1 3

+87 -~+2 +3 +-6 +3

106 - 1 1 7 2

TABLE I

-6-



to yield a decimal or other useable representation.

C. Subtraction

An example of subtraction in the residue system is presented in

table II. To perform subtraction, the subtrahend is first converted

to residues, and then each residue digit is complemented with respect

to its particular modulus. Thus the residue 4 is complemented with respect

to its modulus 5, resulting in 1. The other residues are complemented in

a similar manner. The process then proceeds as with addition.

As alluded to previously, it is possible to represent both positive and

negative numbers by residues. When one of the moduli is an even number,

the range of 0 to M/2-1 can be used to represent positive numbers, while

the range M-1 to M,/2 represents complemented or negative numbers.

If a number is found to be in the range M-1 to M/2 , M must be

subtracted from it to give the correct answer. The sign of a number is

thereby implicitly contained in its residue representation, just as in

binary two's complement notation.

D. Multiplication

An example of multiplication in the residue system is presented in

table III. The multiplier and multiplicand are converted into residues.

The product of each column is expressed as a residue with respect to the

corresponding modulus. Thus the result of this particular multiplication

is the residue number (1,2,3,0) , which indeed is the residue representa-

tion of the decimal answer 156.

E. Division

The residue number system is an integer field. However, the results

of division are not always integers, and hence do not always have a residue

representation. For this reason, in the most general case, division is not

possible using residues. However, in certain special cases, division can

-7-



5 7 9 4

106 1 1 7 2

-99- 4 1 0 3 + +1 +6 +0 +1

7 2 0 7 3

TABLE 11
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5 7 9 4

13 -~ 3 6 4 1

x 12 x+ 2 x 5 x 3 xO0

26

13

156 ~- 1 2 3 0

TABLE II I
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be performed by means of multiplicative inverses.

An integer b is called the multiplicative inverse of an integer

c for a particular modulus m. if

MOD(b x c,mi) = , (2)

where x signifies a product and MOD(X,m i) signifies the operation of

taking the residue of X with respect to modulus mi. We represent the

fact that b is the multiplicative inverse of c for modulus mi

symbolically by the notation

= __1 I
b - c (3)c 1i

m.

In order to use multiplicative inverses for division, two conditions

must be satisfied. First, the dividend must be exactly divisible by the

divisor (i.e., the answer is an integer). Second, if the required multi-

plicative inverses are to exist for all moduli, the divisor must not

contain any moduli as factors.

The use of multiplicative inverses to perform division is illustrated

by the example in Table IV. The residue representation of the divisor 13

for moduli 5,7,9 and 4 is (3,6,4,1). The multiplicative inverse of 3 for

modulus 5 is 2. Similarly, multiplicative inverses for 6,4 and I for their

respective moduli are found to be 6,7 and 1. We now multiply the residue-

representation of 156 (i.e., (1,2,3,0)) by the residue representation

(2,6,7,1) for the multiplicative inverse. The result in residues is (2,5,3,0),

which corresponds to the answer 12 in the decimal system.

F. Evaluation of Polynomials by Table Lookup

Tables can be constructed to perform integer polynomial transforms

-10-



156 1 2 3 0

S13 3 6 4 1 x 2 x 6 x 7 x I

12~ 2 5 3 0

TABLE IV



(i.e., to evaluate polynomials with integer coefficients and arguments).

The tables required to perform the polynomial transform P(X) = X2-X+l

are shown in table V. To transform a number X , it is first encoded

into residues, then each residue digit is used to index a table appropri-

ate for its particular modulus. The decimal number 13 is (3,6,4,1) in

residues. The first digit 3 is used to index the leftmost table, with

the result 2. The remaining residue digits are translated in a similar

manner. The result is (2,3,4,1), which is the residue representation

of 157.

To construct a table for an integer polynomial P and for a

particular modulus mi , each possible residue digit R must be
1m

associated with a new digit M1'OD((P(Rmi),mi)). An example of how the

table P(X)= X2-x+l is constructed for modulus 5 is shown in table VI.

Tables can be constructed for integer polynomials of arbitrary degree.

Tables can also be cascaded to perform polynomial transforms of polynomial

transforms.

G. Residue Operations as Maps

A specific arithmetic operation, such as "addition by 3" , or

"multiplication by 2", can be viewed as a mapping of the set of possible

input residues (for a particular modulus) onto itself, but with a reassign-

ment of values. We call such a reassignment of residue values a map,

and illustrate the concept in Fig. 1. Suppose that the modulus of concern

is 5, and that we wish to represent, for all possible input residues, the

result of adding a number with residue 3. As shown in Fig. la, addition by

3 permutes the numbers assigned to different inputs by a cyclic shift of 3

units. Figure lb shows the map that corresponds to multiplying any input

residue by a number with residue 3 (again the modulus is 5). In this fashion

-12 -



INPUT OUTPUT

0 0-0

2 o-- -- o 2

2 2

3 3- -- o3

4 4

(a)

INPUT OUTPUT

0 o -j 0

I -

2 o- --- 2o

3 3--0 3

4 o--04

(b)

Fig. 1: Maps illustrating (a) residue addition
by 3, and (b) residue multiplication
by 3.

- 13-
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P (X) x 2 x + I

X -13 (3,6,4,1)

Residue
Digit Moduli

5 7 9 4

2 3 3 3 3

3 -~ 2 0 7 ~ 3

4 3 6 -~4

S01 3

6 34 4:

77

8 3

P(X) =(2,3,4,1) = 157

TABLE V
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P(X) X2
- X + I

X IOD(P(X),mi))

0 MOD(O - 0 + 1,5) = 1

I MOD(] - I + 1,5) = 1

2 MOD(4 - 2 + 1,5) = 3

3 MOD(9 - 3 + 1,5) = 2

4 MOD(16 - 4 + 1,5) = 3

TABLE VI
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P(X) X2  X +

X MOD(P(X),m.))

0 MOD(O - 0 + 1,5) = 1

I MOD(I - I + 1,5) = I

2 MOD(4 - 2 + 1,5) = 3

3 MOD(9 - 3 + 1,5) = 2

4 MOD(16 - 4 + 1,5) = 3

TABLE VI

1I
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various arithmetic operations can be viewed as maps.

flaps can be found which allow performance of any of the following

operations: (1) conversion of a conventional number to residue form;

(2) addition; (3) subtraction; (4) multiplication; (5) polynomial

transformation; (6) conversion from residue form to a conventional

number system. Polynomial transforms can be used as a basis for discuss-

ing all of these operations, as we shall now explain.

H. Polynomial Transforms for Encoding, Addition, Subtraction

and Multiplication

Consider the conversion of a conventional number into residue form.

We call this the encoding step. If the input is a decimal number, such as

19, it can be viewed as consisting of a sum of numbers, one for each digit

(in this case, 10 + 9). Addition by 10 can be regarded as polynomial

transform P1O(X) = X + 10 , while addition by 9 requires a polynomial

P9(X) = X + 9. Each of these polynomials can be represented by a collection

of maps, one for each modulus. For conversion of 19 to residue form, we

input X = 0 to Plo(X) , yielding residues (0,3,1,2) for moduli 5,7, 9

and 4. This number is then transformed by the maps for P9 (X) , yielding

(4,5,1,3) for the output residues. If the decimal number has more than

two digits, the higher digits can be handled similarly. In addition, the

input need not be in decimal form. For example, binary inputs can be

utilized if appropriate weighting factors are included. In general, to

add the residue contribution of a particular digit to another residue

number X requires a polynomial form

P(X) = X + MOD(d x w,mi) , (4)

where d represents the content of the digit in question, w is a

weighting factor for that digit, (e.g., a particular power of 10, power of

2, etc.), and mi is the ith modulus.

16 -



Addition of numbers can be performed in a similar way. Suppose we wish

to add the decimal numbers 19 and 87. Maps to perform conversion of 87

to residue form can be constructed and cascaded with the maps to convert

19 (discussed above). If these maps are all cascaded, the various contri-

butions will cyclically accumulate, and for each modulus the output of the

final map would be the residue of the desired sum.

As discussed above, subtraction can be viewed as addition by the

complements of the residues of the number to be subtracted. To subtract the

residue equivalent of a digit d from a.iother residue X we use the

polynomial

P(X) = mi - HOD(X + MOD(dxw,mi ),mi) (5)

for each digit and for each modulus.

To perform multiplication, the multiplier must first be converted to

residue form, for example by the procedure described above. The results of

this conversion must be detected, and used to select residue multiplier

maps. The signals representing the residues of the multiplicand must be

routed through these maps toperform the desired multiplication.

Decoding of Residues

One of the most important operations in residue arithmetic is the

conversion of a residue representation to a more conventional numeric form.

Conversion is needed for sign detection, relative magnitude comparisons,.and

presentation of the results of calculations in forms easily interpreted

by human users.

The most common method for decoding residues is by means of the

Chinese Remainder Theorem.16  This procedure is discussed in the reference,

and since it is not the procedure used in what follows, we do not discuss

it in any detail here. For the particular moduli 5,7, 9 and 4 used in our

-17-



examples, this theorem yields a conversion or decoding formula

X = MOD(756 x R5 + 540 x R7 + 280 x R9 + 945 x R4 ,1260)

(6)

Thus, for example, the residue number (1,1,7,2) becomes

MOD(756 x 1 + 540 x 1 + 280 x 7 + 945 x 2 , 1260)

SiOD(5146,1260) = 106. (7)

A quick check is obtained by converting 106 to residue form. Unfortunately,

this decoding procedure is extremely costly from a computational point of

view, for it requires a number of conventional multiplications and additions,

as well as a division. It can be seen that such a conversion process

requires a large dynamic range. An alternative approach is possible in

which numbers are converted back to a mixed radix system without the costly

computations required above. This latter method will be explained in more

detail.

Consider the following basic approach to converting from one number

system to another. Suppose we wish to convert from a decimal system to a

binary system. In other words, we wish to find the coefficients

an'a n l , ...,al,a o  such that the decimal number X can be expressed as

X = an2n + a 2n-l + + a12
1 + a0  (8)

If we divide X by 2, the remainder will clearly be a0. If we subtract

this a from X , and divide by 2 again we obtain

'= a2 n-l + 2n-2 + ... + a222 + a1 (9)
X=an an2a 2l a

The remainder of X' after further division by 2 is aI . We can repeat this

process to find all the coefficients.

- 18 -



To convert from a r,.sidue number with moduli 5,7,9 and 4, we attempt

to find four coefficients, a3,a2,a,ao, such that the converted number X

is given by

X = [a3 x (5x7x9)]+[a 2 x (5x7)]+[a I x 5]+ a°

The number system that uses these coefficients is called a "mixed radix"

system because the weighting factors are not powers of the same number

as in the decimal or binary systems. The procedure for finding the

coefficients is the same as that described above; i.e., we divide, find a

remainder, subtract it, divide again, etc. If we initially know X in

residue form, the remainder a that would be produced by the first division

(division by 5 in this example) is already available as a residue digit

(R5) and therefore need not be computed. The subtraction required is a

residue subtraction, and the second division (by 5 in this case) can be

accomplished by use of multiplicative inverses, as we now illustrate.

In table VII the conversion of the residue number (1,2,3,0) to mixed

radix form is shown. The coefficient a is the remainder of X after

division by 5, and therefore is precisely equal to the residue R for
5

modulus 5. For our present example, we see that ao = 1. Vie now subtract

a from X in the residue number system, yielding a new residue number

(0,1,2,3). Since the residue R5  is 0, the new number must be exactly

divisible by 5. To divide by 5 we multiply by the multiplicative inverses

of 5 for the remaining moduli 7,9 and 4. Since 5 is relatively prime with

respect to these numbers, the inverses exist and are given by 3,2 and 1.

Multiplication of the new resid!es (R ,R6,R4) = (1,2,3) by (3,2,1)

in the residue system yields (3,4,3), from which we can obtain

- 19 -



modulIi 5 7 9 4

a0 - I 2 3 0 4

Subtract a =1 1 1 1 I

0 1 2 3

Multiply by 3 2 1

a - fl 4 3
Subtract a =3 3 33

0 1 0

Multiply by 4 3
11a 2  

r* 
-

Subtract a 4 4 4
2 0 0L

Multiply by
191

a F-3

Z 0 (5x7x9) + 4(5x7) + 3(5) + ) 56

TABLE VII

-20-



aI  as the modulus 7 digit. The process is continued until all the

coefficients have been found.

The decoding procedure described above can be carried out by means

of maps. If R represents the residue for modulus m , the residue

digits for the remaining moduli are transformed by the polynomial

P(X) = (X-R mn) X Z (11)

where Z is the smallest number such that MOD(Z x m n,mi) = 1. This

operation corresponds to the subtraction and division steps of the conver-

sion process. One of the remaining residues is then selected in place

of Rm , and the process is repeated until all the residue digits have
n

been used. The values of the residues obtained by this sequential process

are the desired mixed radix coefficients. The weighting factor for each

coefficient is the product of I and all the moduli that were used previously.

At first glance, the mixed radix conversion process appears just as

complex and time consuming as the "carry" operations in conventional number

systems. However, it should be noted that many calculations can be performed

before this fixed overhead is incurred. Thus, the more operations there

are to be performed, the more advantageous the residue system will be.

The conversion process appears to be sequential, but in fact it can

be nicely pipelined to increase the throughput of the system. Suppose the

processors for moduli 5, 7, 9 and 4 are completely independent units.

Further, suppose that we wish to perform several different calculations,

which we represent symbolically by A, B, C, etc. Calculation A is

first given to the modulus 5 processor, the proper maps are selected, and

the answer detected. Calculation A and the modulus 5 result are passed

to the modulus 7 unit. Using both A and the modulus 5 result, maps are

i - 21



selected in the modulus 7 unit. The modulus 5 result, the modulus 7

result and the calculation A are passed to the modulus 9 processor.

The two results passed are two of the desired mixed radix coefficients.

While all this is occurring, the modulus 5 unit, having finished calculation

A , can be working on calculation B. This assembly-line approach can

continue through all the modulus processing units, with little or no

idle time. The calculations emerge with the desired mixed radix

coefficients.

J. Exampl e

As a demonstration of the use of maps for residue arithmetic

operations, we illustrate with a specific example. Fig. 2 illustrates

the addition of 19 to 87, subtraction of 99, and transformation by

the polynomial P(X) = X 2 - X+l. The result should be 43, which in

residues (again with bases 5, 7, 9 and 4) is (3,1,7,3).

The top row of Fig. 2 represents the modulus 5 operations, the

second modulus 7, etc. The two leftmost columns encode 19 into its residue

representation, the next two add 87 in residues, the fourth and fifth

subtract 99, and the last column performs the polynomial transform. The

paths are marked by arrows. The signals emerge at ports 3, 1, 7, and

3, which will be shown to translate to 43.

Decoding of this result is shown in Fig. 3. The coefficient ao

is taken as the detected modulus 5 result and is thus 3. Maps for other

signals corresponding to the polynomial P(X) = (X-F5 ) x Z are selected.

R5  in this case is 3 and Z for modulus 7 is 3 since MOD(3x5,7) = 1.

Thus for modulus 7 a map corresponding to P(X)= (X-3) x 3 must be

selected. Similarly, maps for P(X) = (X-3) x 2 and P(X) = (X-3) x 1

22-
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Fig. 2: Example 
of a sequence 

of

arithmetic 
operations 

performed

with maps.
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0 0 0 0 0

1 0 0 0 0 C. 1

2 o 0 0 0 0 o 2

3 -- a4 0 0 0 0 0 3

0 0 0 0 0 C 4

o0 0 0 0 a
1 + -a3 0 0 0 1

2 / 0 0 2

3 0 0 0 3

4 0 0 0 C 4
5 0 C 0 o 5

6 "0 0 0 C 6

0 0 0 0
- --o-a c1 2

2 2
3 1 c 3

4 0 C 4

5 0 0 5

6 0 C 6
7 0 0 7

8 0 C 8

0 0 -a~.

2 ><2

3 * 3

Fig. 3: Converting the residue result
to a mixed radix representation
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must be selected for moduli 9 and 4, respectively. The modulus 7 signal

then passes through the appropriate map and is detected as a 1. The

remaining signals are then routed through maps corresponding to

P(X) = (X-l) x Z , where Z for modulus 9 is 4, and for modulus 4 is 3.

The modulus 9 signal is then detected as a 1. The remaining modulus 4

signal is then routed through a map corresponding to P(X) = (X-l) x 1

and detected as 0. Thus the decoded mixed radix number is (a,a 2,a ,a0 )

where the weighting factors associated with the successive digits are

315, 35, 5 and 1 (i.e., 9x7x5l , 7x5xl , 5xl , and 1). Since a3

is 0, the number is within the range 0 to M1/2-1 and is thus positive; !

hence the answer is Ix35 + 1:5 + 3xl = 43. If a3 were either 2 or 3

then the answer would be negative and given by a3x315 + a 2x35 + a x5 +

aoxl - 1260.

III. OPTICAL IMPLEMENTATION OF RESIDUE ARITHMETIC OPERATIONS

A. Physical Representation of Residues

In searching for a useful match between optics and residue arithmetic,

a fundamental decision must be made regarding what physical property of

light will be used to represent residue numbers. The intensity, polari-

zation or phase 17 of an optical signal might be chosen for this repre-

sentation.

We have chosen to represent residue numbers by the spatial position

of a spot of light. Thus to represent the residue of a number for

modulus 5, five possible spatial positions would be allocated, and one of

these positions would contain a spot of light. The position of this spot

in the array of five possible locations indicates the residue number being

represented.

Our choice of an "on-off" representation at each of several possible

spatial locations is dictated by the serious consequences of making even

small errors in the residue number system. An error of one unit in only

one of the several residues can lead to a very large error in the final
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decoded number. Hence for reasons of reliability it is desirable to

make all decisions binary.

B. Spatial Maqps for PerformingResidue Operations

As discussed in Section II, the various operations required in a

residue arithmetic unit (e.g., encoding, decoding, addition, etc.) can

be implemented by means of maps which permute the "states" representing

residue numbers. For our chosen representation of residues, the physical

states are spatial positions of a light beam. Hence the maps of interest

must be capable of performing spatial permutations of the possible

positions of a light beam.

It is useful to distinguish between two types of processing

operations of interest -- fixed operations and changeable operations.

As an example of a fixed operation, consider a unit that always adds

3 to an incoming residue. Such an operation can be realized by a map

that always introduces the same spatial permutation. On the other hand,

a more general unit may be desired which adds an incoming residue to a

number that can change with time. The latter unit must be implemented by

means of a changeable map, which introduces any of a number of possible

permutations, depending on instructions sent to it. We shall shortly

consider various optical methods for realizing both fixed and changeable

maps.

In considering methods for constructing changeable maps, it is

important to realize that there are many different ways to achieve the

desired mapping units, even after the physical means for implementation

has been decided upon. For example, let the particular modulus of interest

be mi , and suppose that we wish to add any two-digit decimal number
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to the incoming residue, obtaining the residue of the sum at the output.

If the two-digit number is first converted to a residue with respect

to modulus m, , then that residue can be used to select one of the

mi distinct maps that are possible. Alternatively, it may be prefer-

able to apply the unconverted two-digit number directly to the mapping

device. In this case, with a single changeable map, 100 permutations of the

input ports must be realized, one for each of the possible two digit

numbers. However, only mi of these permutations are different. Clearly,

to minimize the number of different maps needed, it is preferable to use

the residue of the two-digit number for map selection.

As an alternative approach, we could cascade two maps, one of which

must realize the permutations required for addition by the "units" digit,

and the second of which must realize the permutations required for addition

by the "tens" digit.

Carrying this decomposition further, we could re:esent the incom-

ing two digit decimal number by a seven digit binary number. The desired

operation could then be achie'ved by cascading seven changeable maps,

each of which is capable of realizing only the two permutations appropri-

ate for that particular bit. In all cases, the mapping devices must have

mi  input ports and mi output ports. As will be demonstrated later,

the binary decomposition is especially useful for realizing certain

types of ch<,ngeable maps.

C. Some Optical Methods for Realizing Fixed Maps

A wide variety of methods for realizing fixed spatial maps can be

imagined. What follows is surely not an exhaustive discussion of the

possibilities; the reader may conceive of other interesting possibilities.
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Figure 4 illustrates a number of possible methods for making a fixed

permutation device. In part (a) , small reflectors are used to re-direct

the incident light beams to their new locations. The device shown in

part (b) uses prisms to accomplish the same result. In part (c), the

inter-connections are made by means of optical waveguides or fibers.

Part (d) illustrates the use of thick gratings operating in the Bragg

regime. The orientation of the gratings must be chosen to satisfy the

Bragg condition in each case. All four approaches are amenable to

integration in thin planar devices.

An alternative method for performing fixed permutations is shown

in Fig. 5(a); we refer to this approach as the "permutation matrix"

method. Light incident on any one of the input ports is spread vertically

to fill the height of the matrix mask 1i. However, in the horizontal

direction, lens combination L2 images the input port to form a vertical

column of light incident on the matrix mask. Lens combination L3

images the matrix mask in the vertical direction onto the vertically

stacked output ports, while integrating or adding the light transmitted

across horizontal rows of the mask. Use of a properly chosen mask, in

which each vertical column and horizontal row contain only one trans-

parent cell, can yield any desired spatial permutation.

This method of performing permutations is very wasteful of light

power, and therefore is not of direct practical interest. However, it

is conceptually useful for it leads to other interesting approaches to

performing arithmetic operations. For example, suppose we wish to construct

a device which will multiply any incoming residue by a fixed number N

and output to a detector array a binary optical pattern representing

the binary number representation of the residue of the product. The

incoming residue number is represented by the spatial position of a light

28 -



(C)

Fig. 4: Possible approaches to constructing fixed
maps using (a) mirrors, (b) prisms,

c) optical waveguides or fibers, and
d)gratings.
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Fig. 4: Possible approaches to constructing fixed
maps using (a) mirrors, (b) prisms,
C) optical waveguides or fibers, and
d) gratings.
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beam, as before. However, as shown in Fig. 5(b), each vertical column

of the mask contains a binary code representing the residue of the

product of the incoming number and the fixed number N. The output

binary number is detected by a vertical detector array having as many

elements as are required for the binary representation of the modulus

in question. Thus for modulus 5, three output detectors are required,

while for a modulus of 31, five output detectors are needed.

While methods for performing fixed operations are of interest,

far more important is the problem of performing changeable operations.

V.e therefore turn attention to the problem of constructing chang3able

maps.

D. Realization of Changeable Maps by M'eans of lap-Banks

In order to construct an optical device or subsystem capable of

performing variable or programmable arithmetic operations, some method

for rapidly selecting or configuring maps must be used.

One approach, illustrated in Fig. 6, is to use a rapidly address-

able bank of maps for each modulus. The map appropriate for a particular

desired operation is selected by means of an optical deflector. As

shown in part (a) of the figure, an acousto-optic or electro-optic

deflector could be used for the map selection process. Suppose we wish

to add an incoming residue number, represented by the spatial position

of a spot of light, to a second residue number that drives the map selector.

If the modulus is mi , then mi different maps must be used, each

with mi  input and output ports. Alternatively, as shown in part (b)

of the figure, the number to be added to the incoming optical residue

could be represented in binary form, each bit controlling a selector
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Fig.6: Optical realization of a changeable map by means
of (a) a single deflector addressing many maps,
and (b) multiple deflectors addressing only
two maps each.
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which need address one of only two possible maps. A cascade of M = [log 2mil

maps pairs is required, where 711 is the smallest integer greater

than or equal to log 2mi (in other words, the number of binary bits

needed to represent mi). Each map again has mi  input and output ports.

The use of a cascade of map-pairs, as shown in Fig. 6(b), is

believed to be preferable to the use of a single large map bank. One

reason for this preference comes from speed considerations. The

speed-capacity product of an acousto-optic deflector (i.e., the number

of different angular positions that can be randomly accessed per second)

is known to be numerically equal to the bandwidth of the acoustic trans- L
ducer. If we assume a bandwidth of 1 GHz and a modulus of 31 (i.e., a

bank of 31 different maps), a time of about 30 nanoseconds will be

required to select a chosen map in the bank. On the other hand, a

sequence of 5 binary acousto-optic deflectors, each having 1 GHz band-

width and all addressed in parallel, w.ould require only 2 nanoseconds

for selection of any desired map. In addition, it should be noted that

a structure consisting of a sequence of pairs of maps can be realized

in a planar geometry more easily than can a single larger map bank.

Hence the possibilities for integration on a planar substrate are

greater for a sequence of map pairs.

The adder described above can easily be changed to a subtractor.

For example, if we wish to subtract the incoming number represented

optically from the number represented electronically, we simply precede

the adder by a fixed optical map that complements the incoming residue

with respect to its modulus. The rest of the unit remains unchanged.

For multiplication, similar kinds of map-banks can be used.
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However, residues 0 must be treated in a special way, since multipli-

cation by zero always yields zero. It is straightforward to by-pass

the map-bank when one of the inputs is zero, providing a proper zero

output.

E. A Changeable Map for Cyclic Permutations

An entirely different kind of approach to constructing a changeable

map is illustrated in Fig. 7. The modulus in this example is 5, so

there are 5 input optical ports and 5 output optical ports. Suppose

that a 10 bit number is to be added to the incoming optical residue.

The map consists of 10 subunits, each subunit consisting of a planar wave-

guide with three "switching channels" represented by three lines on the

figure. A light beam incident at any point on a switching channel is

assumed to be either transmitted or reflected, depending on the electrical

signal applied to the switch.

One of the three channels in each subunit is always along the

diagonal of the subunit. If the binary number applied to that subunit

is 0, then the diagonal channel (labeled "0") is activated as the reflector

and no permutation of the ports occurs. However, if the binary number

applied to the subunit is 1, the diagonal channel is transmissive, and

the off-diagnonal channels (labeled "1") are reflective. As a consequence,

when a binary 1 is applied, a cyclic permutation of the input ports occurs.

The positioning of the off-diagonal channels is dependent on the

different weights (powers of 2) that must be associated with each binary

digit. For example, the tenth bit, for which a "I" represents 512, must

introduce a net offset of 2 for modulus 5, since 2 is the residue of 512.

The first subunit corresponds to the most significant bit. After

reflection from the diagonal or off diagonal channels, the reflected
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beam enters the second subunit, etc. The beam ultimately emerges from

one of the ports of the tenth subunit, the number of this port represent-

ing the residue of the sum of the incoming residue and the input binary

number, for a modulus of 5 in the case illustrated.

Residue addition is possible using the device described above

because such addition always requires a cyclic map (c.f., Fig. la).

However, other operations can be performed using such a device as well.

Subtraction simply requires a fixed (non-cyclic) map to complement the

incoming residue, followed by a cyclic map. Digital-to-residue conver-

sion of the binary number applied to the device is realized by simply

applying the optical input at port 0. Light emerges from the output

port corresponding to the residue of the applied binary number. In

the case illustrated in Fig. 7, the binary number applied to the device

corresponds to decimal number 715. Light exits from the device at pot

0, indicating that the residue of this number is zero for modulus

Multiplication poses a more difficult challenge because it cannot

be performed by a cyclic map. However, it has been pointed out to us
18

that a changeable cyclic map can be used as the heart of a multiplier

provided the modulus is a prime number. As illustrated in Fig. 8 for

a modulus of 5, if we cascade a fixed non-cyclic map with a changeable

cyclic map and a second fixed non-cyclic map, we can perform residue

multiplication by any input number other than zero. (The cases of

residue input of zero and zero multiplier can be handled separately).

The decomposition of multiplication into three maps is much analogous

to first finding the logarithms of the two numbers to be multiplied,
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adding logarithms, and then finding the antilog of the result. The

restriction to moduli that are absolute primes (rather than relative

primes) does not appreciably increase the complexity of the arithmetic

unit.

We conclude that electro-optic devices for performing cyclic

permutations can serve as the basic building blocks of an arito-etic

unit based on residue arithmetic. One promising approach to constructing

the switches required in the device of Fig. 7 is described in reference

19 and is illustrated in Fig. 9. A thin dielectric channel is implanted

in a y-cut LirbO3  planar waveguide. The refractive index of The

channel is normally slightly smaller than that of LiNbO3. Parallel

metal electrodes are deposited along the edges of the channel. If no

voltage is applied across the electrodes, light incident at an angle

greater than the critical angle will suffer total internal reflection.

When a voltage is applied across the electrodes, the refractive index

of the channel is raised, the critical angle increased, and the angle of

incidence now being smaller than the critical angle, the light beam is

transmitted through the channel. Such switches have been predicted to

have bandwidths of several GHz. 19

The chief drawback to the above approach to construction of the

desired switches is the small angle required between the switching

channel and the incident light beam. Rather than having 450 incidence

of light on the channel, as shown in Fig. 7, the angle of incidence

(with respect to the channel) cannot exceed 100 in present practice.

As a consequence the overall switching device must be elongated

considerably in the vertical direction, as shown in Fig. 10.

- 38 -



METAL- f ELECTRODES

CHANNEL

'INCIDENT

. , LIGH1-T

Fig. 9: Integrated optic switching device

- 39-



01234 01 23 4

Fig. 10; Elongation of the switching unit
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An alternative approach to making an electro-optic cyclic permu-

tator is by means of integrated optic waveguide couplers, as shown in

Fig. 11. The structure consists of an array of contiguous waveguides with

couplers that can be activated electrically. When a coupler is switched

on, the signals propagating in adjacent guides are interchanged. In

other words, a simple permutation of adjacent ports is introduced. By

constructing an appropriate geometrical array of couplers, cyclic permu-

tations of all kinds can be synthesized. Non-cyclic permutations are also

possible. Each horizontal line on the waveguide structure of Fig. 11

represents an electrically addressable coupler. Optical waveguide couplers

reported on by Chen, Tangonan and Lee2" of the Hughes Research Laboratories

are attractive candidates for this kind of device. Switching times on

the order of a nanosecond appear possible.

IV. A MATRIX-VECTOR MULTIPLIER

One of the most fundamental signal processing operations is the

multiplication oc an inpu- vector and a stored matrix to produce an

output vector. The input vector has components that generally represent

samples of some data to be processed, while the output vector has

components that are samples of the processed data. The matrix determines

the form of the processing transformation that is applied. This type

of operation includes discrete Fourier transforms, Hadamard transforms,

correlation with multiple stored references, and general linear space-

variant filtering operations.

A. Basic Concept of the Residue Matrix-Vector Multiplier

We restrict attention to data processing problems that require

multiplication of an input vector f times a stored matrix jj to

produce an output vector g. Here f is a P-element column vector
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H, is a P-,Q matrix

h 0 0  hol h- hop_

H =(13)

ShQ-l, 0  hQ-l ,1  hQ-l P-1

and g is a Q-elemnent column vector given by

g = H f (14)

While this operation may at first appear somewhat specialized, it actually

embraces a multitude of widely used operations. We do impose the restric-

tion that the elements of f and H must be represented by integers.

This restriction may be viewed as a kind o- -uantization of the data, which

achieves an accuracy of representation limited only by how large a scaling

factor is used. The size of the scaling factor is in turn limited by the

dynamic range of the system.

To find a single component gk of the output vector , it is

necessary to multiply the P input numbers fo,f], ... ,fp1 by a set of

P stored numbers hko,hk, 1 ...h ,hk p-_ 1 and to add the resulting P

products,

P-1

k =  hk f (15)
gk k p fp

p = O 'P

The fact that this operation requires only sums of products suggests that
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it may be well suited to a residue arithmetic approach. Figure 12 shows

the block diagram of a residue matrix multiplier. In general, the input

signals might be in either analog or digital form, and must first be

converted to a residue representation. The multiplications and additions

implicit in Eq.(8) must then be performed in the residue number system for

each of the chosen moduli. Finally, the output residues must be combined

to produce a total output, which presumably will be in digital form because

of the high accuracy required.

It is highly desirable, for the purposes of processing speed, to

enter the elements of the input vector f in parallel and to extract the

elements of 9 in parallel. Our proposed solution is to have a separate

opto-electronic unit for each modulus, to enter data in parallel to

each such unit, and finally to extract all components of the output

vector in parallel.

Because of the inherent parallelism afforded by optics, it sho'ild be

a goal to perform all multiplications required for each modulus in

parallel. Additions for any one component of the output vector (for any

single modulus) can be performed serially at high speed, and parallel

summing units should be used for all components of the output vector.

The conversion from the residue answers to Q digital numbers represent-

ing the output components of 9 should also be performed at high speed

with Q parallel channels.

B. An Opto-Electronic Implementation of the Matrix-Vector Miultiplier

A wide variety of different opto-electronic versions of a residue

matrix-vector multiplier can be envisioned. Here we discuss only one

particular 1pproach to the problem. The construction of such a system
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requires a means for converting inputs to residue form, a means of per-

forming many residue multiplications in parallel, a means for performing

many sums of products, and finally a means for decoding the residue answers

to a mixed radix number.

C. Conversion to Residues

Conversion of inputs to residue form can be accomplished by means

of the integrated optic devices discussed in the previous section. All

components of the vector I are applied in parallel to an array of

converters. Laser diodes or LED's illuminate the "zero" input ports of

all the converters, and light emerges from the output ports corresponding

to the proper residues.

D. Multiplications

We assume that each separate modulus is handled by a separate unit,

and we consider now only one of these units. The vector ? is input in

residue form as a series of light spots, each component of f being

represented by one light spot in any of mi positions, where mi is

the modulus. There are a total of P light spots, where P is the number

of elements in 1. The next operation to be performed is the multiplication

of each element fp of I by the elements hpq (q = 0,1,...,Q-1) of

the matrix H,. A single residue product h f can be performed by the
pq p

system shown in Fig. 5(b), which was drawn for a modulus of 5. A light

beam enters at one of 5 possible spatial positions, and is mapped by the

initial optics L into a vertical column of light incident on a mask.

The mask consists of a series of transparent and opaque squares, and each

vertical column of such squares stores a binary code for the residue

product of h f . As different residue inputs f occur in time (i.e.,Pq P P

as different vectors I are input), different vertical columns are
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illuminated, and different products are read out in binary form.

Now suppose another mask representing, in binary form, all possible

residue products of a different matrix element h pq with the possible

residue values of f , is stacked above the previous mask, as shown inP

Fig. 13a. It is clear that both products hpqfp and hpq fp can be

read out on respective detector arrays in parallel.

Progressing one step further, we imagine that an array of PxQ

submasks is arranged in one large mask, as shown in Fig. 13b. Each

vertical column of submasks produces binary encoded residue products

hpqfp for a particular value of p. Different columns yield results for

different p's. A detector array consisting of

N = PxQxm i  (16)

elements is required, where T1i  is the smallest integer greater

than or equal to log 2mi .

E. Additions

The next operation to be performed is the sum in Eq.(15). Actually,

Q such sums must be formed in parallel, one for Pach element of the output

vector g. We discuss two different methods for performing these sums.

The integrated-optic cyclic permutators provide one means for generating

the desired sums. The detected signals measured following the multiplier

mask are used to set the switches in the integrated optic adders. Each

row of submasks in Fig. 13b is followed by a row of integrated optic

adders. All switches in a given row are set in parallel by the detected
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signals in that row. Light is input at the zero port of the first

adder in each row, and the sums cyclically accumulate, the light beams

emerging at output ports corresponding to the residues of the desired

sums. This overall system is illustrated in Fig. 14.

The total time required to perform the matrix-vector miltiply for

one modulus consists of the time needed to: (1) set the f converters;

(2) propagate light signals through the encoders and the multiplier

mask; (3) activate the detectors; (4) set the summing encoders; and

(5) propagate light through the summing encoders. The detectors are

probably the slowest elements in this chain.

An alternative method fcr performing the additions is by means

of a CCD detector and cyclic counters. A single row of a CCD detector

array replaces a row of the discrete de-ectors used in the previous

realization. A 2-D CCD detector replaces the entire array of discrete

detectors, but it is assu-aed that all ro..,s of the CCD array can be clocked

out in parallel.

If the modulus of concern is 5, then each of the submasks must be

followed by 7 5 
= 3 detectors. Hence each full row of submasks must

read onto three rows of the CCD detector. Since a given row of detector

elements sees only l's or O's, we can read out that row into a cyclic

counter which tells us the sum across that detector row. To elaborate,

let kpqo , kpql and kpq2 be the least significant to most significant

bits of the product h pqf , mod 5. Then we wish to find the sum (for

each q)
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P-1 2 1

Sq p 0 kpq2x2 kpql x2+kpqo x2

P-1 P-1 P-1
2 "X p kpq2 +2 X kpql+2 X Y pqo

2p=O pO

(17)

But we only want the residue of this sum, so we need only find

= 22 x mod(P_ k pq2 5) + 21 X Pod(P kpql'5)

+ 20 x m" 1( p k pqo (18)

~P=O p~

Each of the mod operations above is accomplished by means of a cyclic

counter. Since again we only desire the residue of the product, the

multiplications by the weighting factors 22, 21 and 20 can be

performed by fixed electronic maps. The addition of the three terms can

then be accomplished by cascading integrated optic adders or their

electronic equivalents.

F. Decoding to Ilixed Radix Form

Additional processing of the modular outputs is required in order

to express components of the output vector in mixed radix form. Such

processing takes the form described previously in section II-I.

Considering a given modulus mi , we assume the moduli ml,m M

have already been processed to yield residues {RI,R 2 .... R. 1 . The

output of the residue-mi processor is Ri. First we must subtract R

from Ri , then multiply this difference by - .• R2 would then be1 m1 m

subtracted from this number, and the result multiplied by 2LI
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This process must be repeated for all the previously obtained residues,

requiring (i-l) m. encoder subunits for the subtractions, and

i-l fixed multiplicative mappings for each element of 9. These mappings

can be incorporated into the final residue summations, with the only

result being an increase of the propagation time needed for these summ-

ations.

G. Computational Complexity

Multiplication of a PxQ matrix times a length P vector requires

PxQ multiplications and PxQ additions. Thus if H, were a 16x16 matrix,

a 16-length vector, and all elements of H and T were a maximum of

12 bits long, the computations would require 256 12-bit multiplications and

256 24-bit additions, resulting in a maximum dynamic range of 32 bits

(4,294,967,296) for .

This same computation could be performed by a residue matrix-

vector multiplier. To achieve a 32 bit dynamic range, we could choose the

8 moduli (31,29,27,23,19,17,13,2) , the largest of which is expressible

as a 5 bit number, and giving us a range from 0 to 4,688,427,041.

Assuming the throughput rate is determined by the largest modulus, we

can express this rate (in vectors/sec.) as

+ Td + Ts + 
5PTp + 7(Tp+Tp) + Td)'1  (19)

encoding sum products mixed radix
conversion

where

Ts = set time of optical encoders;

Tp = propagation delay through ah encoder subunit or a single map;

Tm = propagation time through the multiplier mask and associated

optics;
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Td = detection time;

P = number of elements in vector.

If Ts  Td 10 n sec, Tp = Tm = 0.1 n sec, and P = 16 , then the

matrix multiply is performed about 2xlO 7 times per second with 32 bits of

accuracy. This corresponds to 10.24109 arithmetic operations per second.

A hybrid approach using a CCD array, electronic encoding, and cyclic

counters would have a throughput rate

(Ts + 12Tp +Tm + PxT OCK+T p + T s

encoding CCD scan sum of electronic
binary mapping
sub pro-
ducts

+ 7(Tp+5T) + Td)-l (20)

mixed radix conversion

where T CLOCK is the time required for one CCD shift (the clock period).

For values = 2ns, Tp = 1 n sec, Tm = 0.1 n sec, TCLOCK 100 n sec

and Td = 10 nsec, the throughput rate is about 6xlO
5 vectors per second,

or about 357.2×l06 arithmetic operations per second. The dominant

limitation to speed in this case is the CCD detector.

If such a unit were constructed as a digital electronic system

using 12 bit parallel 175 n sec multiplier accumulators (TPW model TDC

1003J, $150 each, 2.5 watts dissipation each) and 32 bit parallel 10

n sec adders, then the fastest version would require 256 multipliers

and 256 adders. The throughput rate would be 3-106 vectors per

second, faster than the CCD iwplehentation, but more than an order

of magnitude less than the optical residue system, and achieved only at

a very substantial cost in electronic hardware.
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V. AN IMPLEMErTATION OF A RESIDUE ARITHMETIC UNIT WITH

CONVENTIONAL LOGIC

Attention is now turned to the possibility of constructing a residue

arithmetic unit with conventional logic. An obvious approach would be

to use AND gates to gate signals off of a bus. The output of the gates

would be connected to another bus in a prearranged manner, as shown in

Figure 15. Thus, by selecting a particular set of gates the connections

between the buses would be mapped in a certain manner. If this bank

of maps were to function as a residue adder then mi different maps

would have to interconnect the buses, where mi is the modulus.

Thus m2 gates would be needed. The outputs of each gate would be

connected to mi-I other outputs and mi inputs. The fan in and fan

out constraints would be pressed by even a modest sized modulus.

One solution would be to parallel each gate to increase the drive

power.

The number of maps needed for a residue adder can be reduced with

a binary decomposition technique. Thus, only 2 maps would be needed

per bank. However, fl1i=rLOG 2mil banks would be necessary. This would

mean the signals would take approximately LOG 2mi longer to propagate

through such an adder than they would through a single map. This

approach eases the fan in and fan out problem at the expense of

propagation delay. The number of AND gates needed would be 2miFLOG 2mil.

The problem of implementing a residue multiplier would be similar.

Either mi maps would be needed in each bank or 21LOG 2 (mi-l)1 + 2

selectable maps in ILOG2(mi-l)1 + 1 banks could be used. Thus the
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Fig. 15: A bus gating structure which allows
selectable interconnections between
two busses.
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obvious approach would require m2 gates while the decomposition

approach would take mi(2[LOG 2 (mi-l)1 + 2) gates. Other types of

maps that are needed, such as fixed maps, would just be a rewiring and

would not add to the gate count or delay. Polynomial transform maps are

equivalent to any other gated maps.

The latency and component count of systems can be analyzed with this

approach. The latency of such systems is proportional to the number of

banks while the number of maps within a bank is limited by the fan out

of the logic. The time to perform a calculation with a cascaded bank

approach for any realistic computation becomes impractical quite quickly.

This situation can be improved by pipelining such a unit by inserting

latches between banks or groups of banks to act as temporary storage

platforms. Thus the throughput rate of the system could be improved.

However, this is accomplished at the expense of increased latency, which

is the time delay associated with a particular calculation.

A circuit was designed which can either be considered as one stage

of a pipelined system of the iteration primitive of a complete modular

processor. The approach was to design a "super" bank. This is a bank

that has the maps necessary to act as an adder, multiplier, and subtractor

for a given modulus. The output of the bank was latched with some master-

slave flip flops. The outputs of the flip flops serve as the inputs of

the bank. (The circuit is playfully referred to as "a snake eating its

tail". See Figure 16.) A version of the circuit was designed for

modulus 5. It had 3 addition maps (reduced via binary decomposition), 5

multiplier maps, and a polynomial transform map P(X) = 5-X to implement

subtraction. Circuitry was also included for loading and resetting the
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flip flops. The circuit was designed on an automated digital design

facility called SPRINT and located at the Stanford Linear Accelerator

Center. The circuit required 11 integrated circuit chips. The board

layout is shown in Figure 17. The horizontal connections are on one

side of the board while the vertical ones are on the other side. 370

connections are needed with 147 vias (connections between the two

sides of the board). About 150 inches of connections are needed. The

design illustrates several problems with a digital approach. For high

speed operation the path lengths, and thus the travel times through all

the inputs of all the maps, must be about the same since the cycle time

would be constrained by the worst case. This proved to be very difficult.

The inputs and outputs of gates always seem to be on the wrong side of

a chip.

At this level of circuit complexity the designer still has some

degree of control. Larger moduli imply a greater complexity and

would probably require design in a completely automated manner.

The designer would thus lose control of the various path lengths. The

path length problem is further complicated by the connection routing

problem associated with printed circuit boards. The only way a connection

can bridge another is by jumping to the other side of the board. As the

circuit complexity increases the routing problem increases drastically.

The problem of large differences in signal paths could probably be solved

by integrating the whole circuit on a chip. This custom LSI approach

would probably be quite costly since a different chip would be needed

for each modulus. Another problem with such a chip would be the pin

count needed. At least mi pins for input, mi pins for output,
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[L OG 2mil Pins for addition map selection, [LOG 2(mi-l1+ 1 pins for

multiplicative map selection, a pin for reset, a pin for set, a pin for

power, and a pin for ground. The number of pins for input or output

could be reduced to ILOG2 mi each. However, binary to mi decoders

and the mi to binary encoders would have to be included on the chip.

This would further contribute to the delay.

The basic circuit was intended as more than just a testbed for

implementation problems. It was designed as the iteration primitive

of a modular processor of a residue processing system. It was designed

to demonstrate the least number of components needed to implement a complete

system. The circuit can mimic any number of cascaded banks by sequenti-

ally duplicating the effect of each bank. Thus a system of 100 banks

could be simulated with 100 cycles of this circuit. An interesting

aspect of this approach is that n banks can be implemented in less

than n cycles depending on the calculation desired. Any cycles needed

for addition of 0 or multiplication by 1 can be skipped. This savings

is demonstrated in the process of encoding from binary to residue. If

the binary digit is 0 nothing needs to be done. Thus on the average

a D digit binary number can be encoded in D/2 cycles. Now suppose

that there were nA cascaded banks of addition and that the requests for each

type of addition map were tallied in separate counters. Each additive map

can be used repeatedly until it depleats its tally, since addition is

commutative and the cascading of additive maps in any order is equivalent.

Furthermore, the tally counters need only be modular mi counters since

the effect of cascading mi+x of the same additive maps is equivalent

to cascading x such maps. Thus if nA additive requests were randomly
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distributed to the [LOG 2mil types of additive maps each modular tally would,

on the average, have mi/2 requests. Thus the number of cycles needed

for nA requests could be reduced to ILOG2 mi](mi/2) cycles. What is

so unusual is that this is independent of the number of addititive

requests nA.

It must be noted that all requested additions or subtractions

(addition of an additive inverse) must be honored before any multipli-

cation since multiplication and addition are not commutative. If a

multiplication by 0 is desired, all additive tallies can be immediately

reset. Thus this method of tallies works best with large cascades of

additions. While this scheme was originally developed to reduce the

latency of an iterative electronic modular processor, it can be applied

to any type of residue processor. It is a type of computational com-

pression only available in residues. The technique might also be of

interest in some special cascaded bank versions.

The electronic implementations of banks and their maps become quite

complex very quickly. The problems associated with packaging could

probably be minimized with an LSI approach; however, any approach using

conventional logic will still face a fundamental difficulty. The entire

residue arithmetic unit was designed to avoid detections and restimu-

lations of signals because this would inhibit optical approaches.

Conventional logic relies on detection and restimulation of a signal at

each gate. Though this delay is very small, it is not required by the

underlying architecture, and thus it becomes a burden. Even though the

gates of n cascaded banks could be set in parallel, a signal would still

take n set times to propagate through such a system. To try to avoid
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such a problem, pipelined and iterative versions of the system, using

conventional logic, were explored. The pipelined version contributed to

a more efficient utilization of the banks, while the iterative version

allowed computation compression via various shortcuts, but neither

version could hide the implied set time of each level of logic. The

fundamental fact is that this residue arithmetic unit was specifically

designed to avoid the need of detections and restimulations at each level

of logic. Thus, any such delay, no matter how small, would be a hinderance

and would slow the system.

VI. POTENTIAL ADVANITAGES OF OPTICS

In the previous sections, both optical and electronic implementations

of basic residue operations have been considered. A constantly reoccurr-

ing question throughout the past year has been: exactly what potential

advantages does optics offer over an all-electronic implementation?

Our perception of the answer or answers to this question has gone through

many evolutions, generally progressing from the philosophical to the more

concrete. The evolution is still in progress, but we offer the following

thoughts on this matter.

A. Parallelism

The inherent parallelism of optical systems, and the parallel nature

of the residue number system, have been constant driving forces behind

our attempts to match the two. An extreme example of this parallelism

is offered by a simple lens. By imaging a set of input ports onto a set

of output ports, a reversal of the order of those ports can be accomplished.

This reversal is achieved without the necessity of providing separate

electrical connections between inputs and outputs, and without the
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associated problems of connections crossing over conrections.

The integrated optic cyclic permutation device of Fig. 7 provides a

second good example. With only three separate switching channels per

subcell, and only two electrical inputs to each subcell, a complicated

cyclic permutation of many ports is accomplished. (tote that regardless

of how large the modulus may be, only three switching channels are

required per subcell.) The cyclic permutator achieved with waveguide

couplers does not share this parallelism -- separate paths must be supplied

for each possible connection.

B. Bandwidth

Unfortunately, optical devices (including detectors, switches, etc.)

do not offer any significant speed advantages over their all-electronic

counterparts, at least with respect to the time it takes to activate the

device. Nonetheless, the possibility of accomplishing some form of

wavelength multiplexing remains tantalizing. For the first time a

concrete path towards this goal can be identified. The waveguide couplers

composed of electrically activated Bragg gratings can be very wavelength

sensitive. It is possible to envision one set of Bragg couplers which

are effective only for a narrow band of optical frequencies, and are

completely without effects on other frequency bands. It follows that

multiple sets of couplers could be deposited, each set operating inde-

pendently on its own optical frequency band. The throughput of the optical

residue unit could thus potentially be increased substantially. One can

even consider the possibility of realizing all of the different modular

processors on one set of waveguides. While this possibility may today

seem remote, due to coupler inefficiencies, low yield,and other problems,
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nonetheless it provides a strong motivation for further work on perfecting

the technology.

C. Set time vs. propagation time

While optical and electronic switching devices require comparable

times for activation, the time required for propagation of a signal

through the device may be much shorter in the optical case. Hence, if a

long sequence of additions are required, as in the case of matrix-vector

multiplication, for example, the speed with which the additions are

performed may be much faster in the optical case, in spite of comparable

set times for the optical and electronic devices. Effort is now being

expended to quantify this idea further.

D. Light through light

In studying the electronic methods of implementing residue

operations (section V), it became apparent that major problems in propa-

gation delay arise due to the difficul:ies associated with crossing

electrical interconnections. Such difficulties can be avoided in some

optical realizations, due to the ability of light beams to pass through

other light beams without interaction. Such an advantage is evident in

the cyclic permutator of Fig. 7, in which many different optical paths

cross one another in a purely planar geometry.

VII. CONCLUDING REMARKS

We conclude this report with miscellaneous information concerning

the administration of this grant.

A. Publications. The following written publications were produced

during the first year of this grant:

(1) Y. Tsunoda and J.W. Goodman, "Combined optical AD conversion
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and page composition for holographic memory applications",

Appl.Opt. 16, pp.2607-2609, October 1977.

(2) A. Huang, "An Optical Arithmetic Unit", Digest of Papers,

International Optical Computing Conference, Budapest, Hungary,

October 1977.

(3) A. Huang, "An Optical Arithmetic Unit", Proceedings of

1977 Electro-Optical Systems Design Conference, Anaheim, 1977.

B. Professional personnel

The following individuals contributed to the research effort

supported by the grant:

(1) J.W. Goodman, Principal Investigator

(2) Alan Huang, Research Assistant

(3) Yoshito Tsunoda, Visiting Scholar

(4) Satoshi Ishihara, Visiting Scholar

(5) Amnon Aliphas, Research Assistant

C. Spoken Papers

(1) Alan Huang, "An Optical Arithmetic Unit", International Optical

Computing Conference, Budapest, Hungary, October 1977.

(2) Alan Huang, "An Optical Arithmetic Unit", Annual Meeting of

the Optical Society of America, Toronto, Canada, October 1977.

(3) Alan Huang, "An Optical Arithmetic Unit", Electro-Optical

Systems Design Conference, Anaheim, Ca. November 1977.
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D. Inventions

A patent disclosure on the cyclic permutator of Fig. 7 has been

completed with Yoshito Tsunoda, Alan Huang and Joseph Goodman as

coinventors.

A patent disclosure on an optical A/D converter, as described in

publication (1) above, has been completed with Yoshito Tsunoda and Joseph

Goodman as coinventors.
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